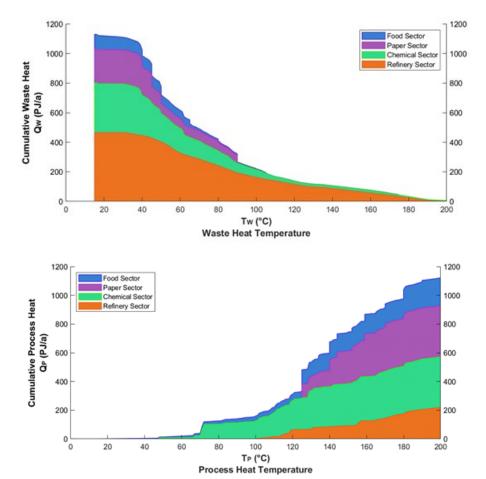


EJECTOR TECHNOLOGIES FOR PERFORMANCE INCREASE OF INDUSTRIAL HEAT PUMPS


G. DREXLER-SCHMID

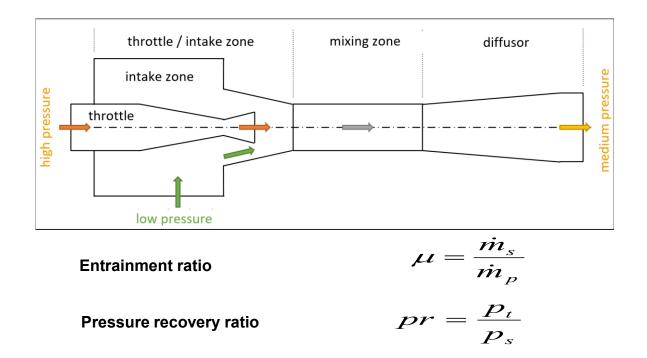
NEFI-Conference, Linz, 15.10.2022

NEFI is an Energy Model Region funded by the Austrian Climate and Energy Fund.

MOTIVATION

- Large potential of industrial heat pumps esp. in pulp & paper, chemical and food industries
- Supply temp. of >100°C with heat sink temp. mostly < 60°C
- High temperature lifts come with losses in expansion process.
- Ejectors allow recuperation of expansion energy. +27% reported in literature.

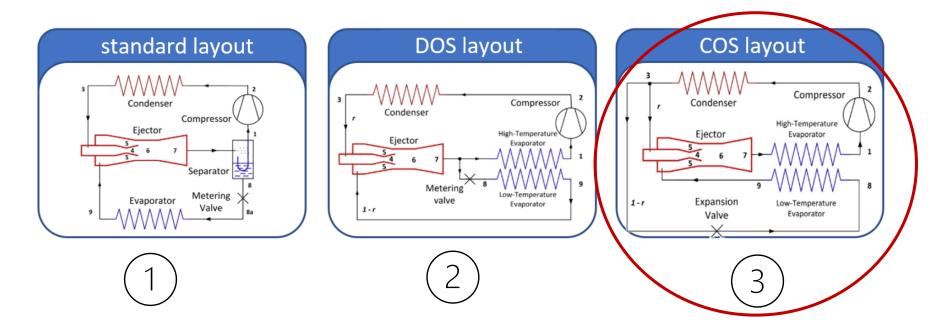
A. Marina et al. An estimation of the European industrial heat pump market potential", Renewable and Sustainable Energy Reviews, Volume 139, 2021.



Methods used for assessing technical feasibility of ejector technologies in industrial heat pump applications

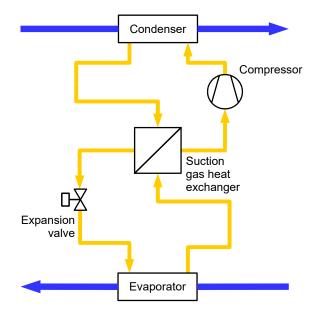
METHODS (1)

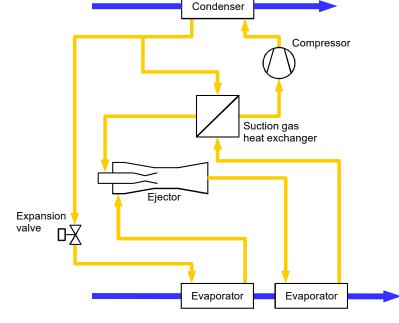
SIMULATIONS ON EJECTOR LEVEL



- Butane used as refrigerant for simulation of two-phase ejectors
- CFD simulations performed with Ansys Fluent® based on homogenous flow model

METHODS (2)


SIMULATIONS ON HEAT PUMP LEVEL - INTEGRATION LAYOUTS



STEADY-STATE SIMULATIONS OF DIFFERENT OPERATING CONDITIONS

a) REFERENCE REFRIGERANT CIRCUIT

b) EJECTOR – COS CIRCUIT

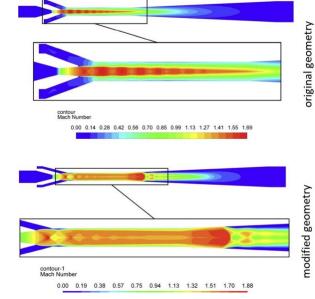
METHODS (4)

CONTROL STRATEGIES OF THE MODEL

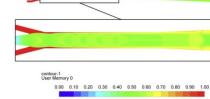
Component	Setpoint	Controlled variable
Compressor	Heat output	Speed
Valve	Superheat after evaporator	Valve position
Admixing valve on suction gas superheater	Superheat after compressor	Valve position

PARAMETERS APPLIED TO COMPARE REFERENCE & COS EJECTOR CONFIGURATION

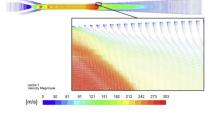
Use case	Refrigerant	Heat source	Heat sink	Source cooling
Industrial steam production	R600	60-100°C	130°C	5 resp. 10 K
Industrial drying	R1336mzz-Z	60-100°C	160°C	5 resp. 10 K



Results of work performed in the technical feasibility study

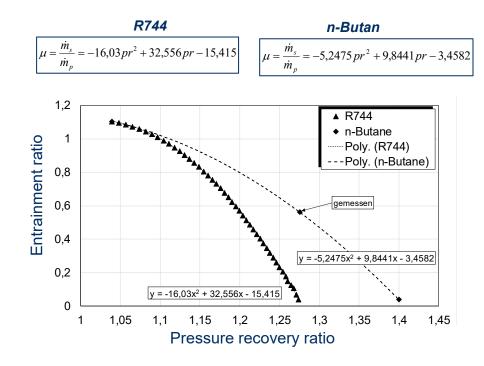

EJECTOR LEVEL: CFD SIMULATIONS

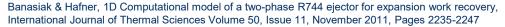
Main result:

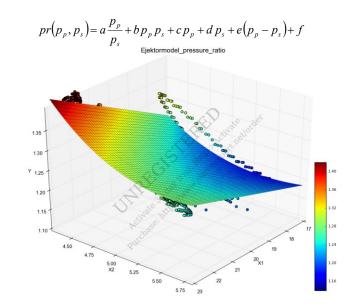

- Numerical simulations very promising
- flow behaviour and vapor quality very sensitive on ejector geometry details

a) Comparison of Mach number

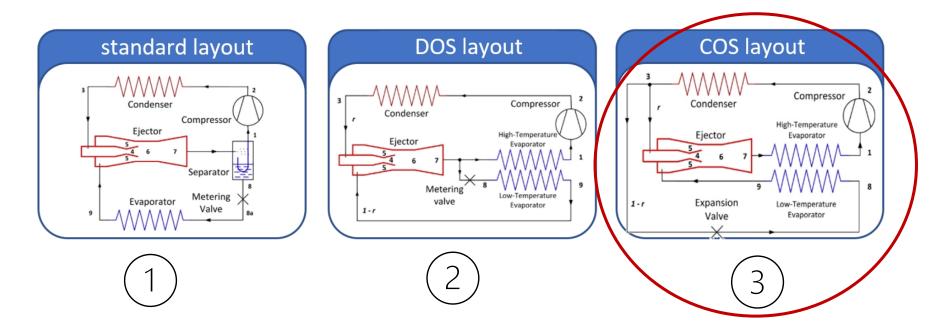
b) Comparison of vapour quality




c) Velocity vectors within ejector geometry



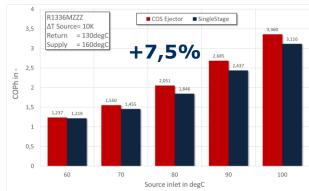
EJECTOR LEVEL

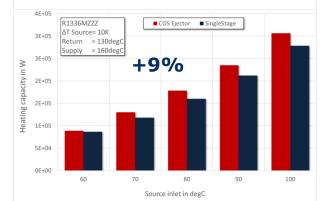


Model representation for the pressure recovery ratio; measured values plotted against model values

HEAT PUMP LEVEL

SIMULATIONS ON HEAT PUMP LEVEL - INTEGRATION LAYOUTS

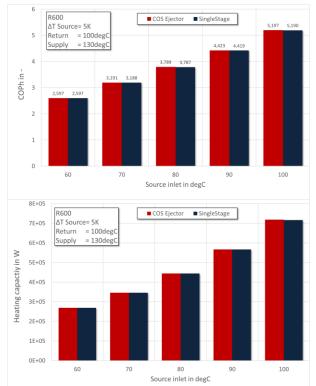



HEAT PUMP LEVEL: SOURCE COOLING 10K

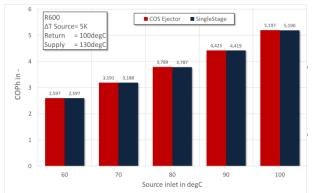
R600 ■ COS Ejector ■ SingleStage AT Source= 10K = 100degC Return +7% = 130degC vlaguZ 4.357 COPh in -2,454 1 60 70 80 90 100 Source inlet in degC 8E+05 R600 ■ COS Ejector ■ SingleStage ΔT Source= 10K 7E+05 = 100degC Return = 130deg0 6E+05 Flow +10% Heating capacity in W 5E+05 4E+05 3E+05 2E+05 1E+05 0E+00 60 70 90 100 80 Source inlet in degC

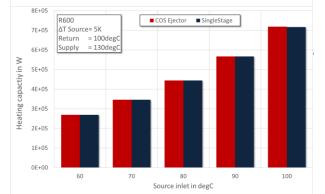
a) Steam production (130°C, R600) b) Industrial drying (160°C R1336mzz-Z)

Ejector shows **positive effect** at prevailing pressure difference


Heating capacity & COP increase

Maximum achieved for both in the middle range of source temperature (from 70 to 90°C)


HEAT PUMP LEVEL: SOURCE COOLING 5K



a) Steam production (130°C, R600)

b) Industrial drying (160°C, R1336mzz-Z)

Ejector circuit **no significant advantage**

Ejector is "locked" into low-pressure difference between the two evaporators

Operation in a single-stage mode without loss of efficiency resp. heating performance

CONCLUSIONS & OUTLOOK

- Ejector technology has the potential to increase performance of industrial heat pumps
- Further R&D to be conducted

- Development of hermetic ejector design & tools for efficient ejector design
- Further development of models for simulation
- Experimental validation of ejectors operated under different heat pump conditions

More information on energy-intensive industrial processes with demand for high temperature heat pumps (sink temp. >100°C) and large temp. lifts (50 - 100 K) required

HOW CAN YOU SUPPORT?

As **<u>industrial end-user</u>**: participate in **expert interviews** to assess potential of ejector technology in your company; most promising processes will be evaluated in more detail in a feasibility study **free-of-charge**.

As <u>engineering company</u>: participate in **expert interviews** to assess obstacles / barriers for market diffusion of ejector technology

Annemarie Schneeberger +43 664 815 79 83 Annemarie.Schneeberger@ait.ac.at

ANY QUESTIONS?

THANK YOU!

The results presented have been achieved in the "VWE" project, which was supported by FFG Österreichische Forschungsförderungsgesellschaft mbH (project no. 871723). Further nationally co-financed R&D work in this field is currently performed in the "ETHP" project (project no. FO999888433)